
Crowbar Specification
Release 09de53c don't announce on irc oops

boringcactus (Melody Horn)

May 19, 2021

Table of Contents

1 Motivation 3

2 Journal 5

3 Discuss 7

4 Chapters 9
4.1 Comparison to C . 9
4.2 Memory Safety . 10
4.3 Error Handling . 12
4.4 Language . 12
4.5 License . 22
4.6 TODO . 23
4.7 Acknowledgements . 24

 Element Index 25

 Index 27

 i

Crowbar: the good parts of C, with a little bit extra.
This is entirely a work-in-progress, and should not be relied upon to be stable (or even accurate) in
any way.
Crowbar is a language that is derived from (and, wherever possible, interoperable with) C, and aims
to remove as many footguns and as much needless complexity from C as possible while still being
familiar to C developers.
Ideally, a typical C codebase should be straightforward to rewrite in Crowbar, and any atypical C
constructions not supported by Crowbar can be left as C.
This site hosts the Crowbar specification at https://crowbar-lang.org and at
gemini://crowbar-lang.org. Additional resources you may be interested in:

• sr.ht project hub
• specification PDF
• specification EPUB
• reference compiler

 1

https://en.wiktionary.org/wiki/footgun
https://crowbar-lang.org
gemini://crowbar-lang.org
https://sr.ht/~boringcactus/crowbar-lang/
/crowbar-spec.pdf
/crowbar-spec.epub
https://git.sr.ht/~boringcactus/crowbar-reference-compiler

Crowbar Specification, Release 09de53c don't announce on irc oops

2 Chapter .

Chapter 1

Motivation

• Rust is not a good C replacement

 3

https://drewdevault.com/2019/03/25/Rust-is-not-a-good-C-replacement.html

Crowbar Specification, Release 09de53c don't announce on irc oops

4 Chapter 1. Motivation

Chapter 2

Journal

• Crowbar: Defining a good C replacement
• Crowbar: Simplifying C’s type names
• Crowbar: Turns out, language development is hard

 5

https://www.boringcactus.com/2020/09/28/crowbar-1-defining-a-c-replacement.html
https://www.boringcactus.com/2020/10/13/crowbar-2-simplifying-c-type-names.html
https://www.boringcactus.com/2020/10/19/crowbar-3-this-is-tough.html

Crowbar Specification, Release 09de53c don't announce on irc oops

6 Chapter 2. Journal

Chapter 3

Discuss

• announcement mailing list
• discussion mailing list

 7

https://lists.sr.ht/~boringcactus/crowbar-lang-announce
https://lists.sr.ht/~boringcactus/crowbar-lang-devel

Crowbar Specification, Release 09de53c don't announce on irc oops

8 Chapter 3. Discuss

Chapter 4

Chapters

4.1 Comparison to C

What differentiates Crowbar from C?

4.1.1 Removals

Some of the footguns and complexity in C come from misfeatures that can simply not be used.
Footguns

Some constructs in C are almost always the wrong thing.
• goto

• Wide characters
• Digraphs
• Prefix ++ and --
• Chaining mixed left and right shifts (e.g. x << 3 >> 2)
• Chaining relational/equality operators (e.g. 3 < x == 2)
• Mixed chains of bitwise or logical operators (e.g. 2 & x && 4 ^ y)
• Subtly variable-size integer types (int instead of int32_t, etc)
• The comma operator ,

Some constructs in C exhibit implicit behavior that should instead be made explicit.
• typedef

• Octal escape sequences
• Using an assignment operator (=, +=, etc) or (postfix) ++ and -- as components in a larger

expression
• The conditional operator ?:
• Preprocessor macros (but constants are fine)

Needless Complexity

Some type modifiers in C exist solely for the purpose of enabling optimizations which most compilers
can do already.

• inline

 9

• register

Some type modifiers in C only apply in very specific circumstances and so aren’t important.
• restrict

• volatile

• _Imaginary

4.1.2 Adjustments

Some C features are footguns by default, so Crowbar ensures that they are only used correctly.
• Unions are not robust by default. Crowbar offers two types of union declarations: a tagged
union (the default) and a fragile union for interoperability purposes.

C’s syntax isn’t perfect, but it’s usually pretty good. However, sometimes it just sucks, and in those
cases Crowbar makes changes.

• C’s variable declaration syntax is far from intuitive in nontrivial cases (function pointers,
pointer-to-const vs const-pointer, etc). Crowbar uses simplified type syntax to keep
types and variable names distinct.

• _Bool is just bool, _Complex is just complex (why drag the preprocessor into it?)
• Adding a _ to numeric literals as a separator
• All string literals, char literals, etc are UTF-8
• Octal literals have a 0o prefix (never 0O because that looks nasty)

4.1.3 Additions

Anti-Footguns

• C is generous with memory in ways that are unreliable by default. Crowbar adds memory safety
conventions to make correctness the default behavior.

• C’s conventions for error handling are unreliable by default. Crowbar adds error propagation to
make correctness the default behavior.

Trivial Room For Improvement

• Binary literals, prefixed with 0b/0B

4.2 Memory Safety

In general, Crowbar does its best to ensure that code will not exhibit any of the following memory
errors (pulled from Wikipedia’s list of memory errors. However, sometimes the compiler knows less
than the programmer, and so code that looks dangerous is actually fine. Crowbar allows program-
mers to suspend the memory safety checks with the fragile keyword.

4.2.1 Access errors

Buffer overflow

Crowbar addresses buffer overflow with bounds checking. In C, the type uint8_t * can point to a
single byte, a null-terminated string of unknown length, a buffer of fixed size, or nothing at all. In
Crowbar, the type uint8 * can only point to either a single byte or nothing at all. If a buffer is

Crowbar Specification, Release 09de53c don't announce on irc oops

10 Chapter 4. Chapters

https://en.wikipedia.org/wiki/Memory_safety#Types_of_memory_errors

declared as uint8[50] name; then it has type uint8[50], and can be implicitly converted to
(uint8[50])*, a pointer-to-50-bytes. If memory is dynamically allocated, it works as follows:

void process(uintsize bufferSize, uint8[bufferSize] buffer) {
 // do some work with buffer, given that we know its size
}

int8 main(uintsize argc, (uint8[1024?])[argc] argv) {
 uintsize bufferSize = getBufferSize();
 (uint8[bufferSize])* buffer = malloc(bufferSize);
 process(bufferSize, buffer);
 free(buffer);
}

Note that malloc as part of the Crowbar standard library has signature (void[size])*
malloc(uintsize size); and so no cast is needed above. In C, buffer in main would have type
pointer-to-VLA-of-char, but buffer in process would have type VLA-of-char, and this conversion
would emit a compiler warning. However, in Crowbar, a (T[N])* is always implicitly convertible to
T[N], so no warning exists.
Note as well that the type of argv is complicated. This is because the elements of argv have uncon-
strained size.

Todo

figure out if that’s the right way to handle that

Buffer over-read

bounds checking again
Race condition

uhhhhh idk
Page fault

bounds checking, dubious-pointer checking
Use after free

free(&x); will set x = NULL; owned and borrowed keywords

4.2.2 Uninitialized variables

forbid them in syntax
Null pointer dereference

dubious-pointer checking
Wild pointers

dubious-pointer checking

4.2.3 Memory leak

Stack exhaustion

uhhhhhh idk
Heap exhaustion

that counts as error handling, just the malloc-shaped kind

 Crowbar Specification, Release 09de53c don't announce
on irc oops

4.2. Memory Safety 11

Double free

this is just use-after-free but the use is calling free on it
Invalid free

don’t do that
Mismatched free

how does that even happen
Unwanted aliasing

uhhh don’t do that?

4.3 Error Handling

TODO

4.4 Language

The syntax of Crowbar is designed to be similar to the syntax of C.
A Crowbar source file is UTF-8. Unless otherwise specified, a character in this specification refers to a
Unicode scalar value. Crowbar source files can come in two varieties:
A Crowbar source file is read into memory in two phases: scanning (which converts text into an
unstructured sequence of tokens) and parsing (which converts an unstructured sequence of tokens into
a parse tree).
Syntax elements in this document are given in the form of parsing expression grammar rules.

4.4.1 Scanning

token
A single atomic unit in a Crowbar source file. May be a keyword, an identifier, a constant, a string
literal, or a punctuator. Keywords, identifiers, and constants (except for character constants) must
have either whitespace or a comment separating them. Punctuators, string literals, and character
constants do not require explicit separation from adjacent tokens.

keyword
One of the literal words bool, break, case, const, continue, default, do, else, enum,
false, float32, float64, for, fragile, function, if, include, int8, int16, int32,
int64, intaddr, intmax, intsize, opaque, return, sizeof, struct, switch, true,
uint8, uint16, uint32, uint64, uintaddr, uintmax, uintsize, union, void, or while.

identifier
A nonempty sequence of characters blah blah blah

Todo

figure out https://www.unicode.org/reports/tr31/tr31-33.html

constant
A numeric (or numeric-equivalent) value specified directly within the code. May be a decimal
constant, a binary constant , an octal constant, a hexadecimal constant, a floating-point constant, a
hexadecimal floating-point constant, or a character constant. Any of these except for the character
constant may contain underscores; these are ignored by the compiler and only meaningful to
humans reading the code.

Crowbar Specification, Release 09de53c don't announce on irc oops

12 Chapter 4. Chapters

https://www.unicode.org/glossary/#unicode_scalar_value
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://www.unicode.org/reports/tr31/tr31-33.html

decimal constant
A sequence of characters matching the regular expression [0-9_]+. Denotes the numeric value
of the given sequence of decimal digits.

binary constant
A sequence of characters matching the regular expression 0[bB][01_]+. Denotes the numeric
value of the given sequence of binary digits (after the 0[bB] prefix has been removed).

octal constant
A sequence of characters matching the regular expression 0o[0-7_]+. Denotes the numeric
value of the given sequence of octal digits (after the 0o prefix has been removed).

hexadecimal constant
A sequence of characters matching the regular expression 0[xX][0-9a-fA-F]+. Denotes the
numeric value of the given sequence of hexadecimal digits (after the 0[xX] prefix has been
removed).

floating-point constant
A sequence of characters matching the regular expression
[0-9_]+\.[0-9_]+([eE][+-]?[0-9_]+)?.

Note Unlike in C and many other languages, 6e3 in Crowbar is not a valid floating-point
constant. The Crowbar-compatible spelling is 6.0e3.

Denotes the numeric value of the given decimal number, optionally expressed in scientific nota-
tion. That is, XeY denotes X * 10^Y.

hexadecimal floating-point constant
A sequence of characters matching the regular expression
0(fx|FX)[0-9a-fA-F_]+\.[0-9a-fA-F_]+[pP][+-]?[0-9_]+. Denotes the numeric
value of the given hexadecimal number expressed in binary scientific notation. That is, XpY
denotes X * 2^Y.

character constant
A pair of single quotes ' surrounding either a single character or an escape sequence. The single
character may not be a single quote or a backslash \. Denotes the Unicode scalar value for either
the single surrounded character or the character denoted by the escape sequence.

escape sequence
One of the following pairs of characters:

• \', denoting the single quote '
• \", denoting the double quote "
• \\, denoting the backslash \
• \r, denoting the carriage return (U+000D)
• \n, denoting the line feed, or newline (U+000A)
• \t, denoting the (horizontal) tab (U+0009)
• \0, denoting a null character (U+0000)

Or a sequence of characters matching one of the following regular expressions:
• \\x[0-9a-fA-F]{2}, denoting the numeric value of the given two hexadecimal digits
• \\u[0-9a-fA-F]{4}, denoting the numeric value of the given four hexadecimal digits
• \\U[0-9a-fA-F]{8}, denoting the numeric value of the given eight hexadecimal digits

string literal
A pair of double quotes " surrounding a sequence whose elements are either single characters or
escape sequences. No single-character element may be the double quote or the backslash.
Denotes the UTF-8-encoded sequence of bytes representing the sequence of characters which,

 Crowbar Specification, Release 09de53c don't announce
on irc oops

4.4. Language 13

either directly or via an escape sequence, are specified between the quotes.
punctuator

One of the literal sequences of characters [,], (,), {, }, ., ,, +, -, *, /, %, ;, :, !, &, |, ^, ~, >, <,
=, ->, ++, --, >>, <<, <=, >=, ==, !=, &&, ||, +=, -=, *=, /=, %=, &=, |=, or ^=.

whitespace
A nonempty sequence of characters that each has a Unicode general category of either Control
(Cc) or Separator (Z). Separates tokens.

comment
Text that the compiler should ignore. May be a line comment or a block comment.

line comment
A sequence of characters beginning with the characters // (outside of a string literal or comment)
and ending with a newline character U+000A.

block comment
A sequence of characters beginning with the characters /* (outside of a string literal or comment)
and ending with the characters */.

4.4.2 Source Files

HeaderFile <- IncludeStatement* HeaderFileElement+
HeaderFileElement <- TypeDefinition / FunctionDeclaration /
VariableDefinition / VariableDeclaration

A Crowbar header file defines an API boundary, either at the surface of a library or between
pieces of a library or application. IncludeStatements can only appear at the beginning of the
header file, and header files cannot define behavior directly. Conventionally, a header file has a
.hro file extension.

ImplementationFile <- IncludeStatement* ImplementationFileElement+
ImplementationFileElement <- TypeDefinition / VariableDefinition /
FunctionDefinition

A Crowbar implementation file defines the actual behavior of some piece of a library or applica-
tion. It can also define internal types, functions, and variables. IncludeStatements can only
appear at the beginning of the implementation file. Conventionally, an implementation file has a
.cro file extension.

4.4.3 Including Headers

IncludeStatement <- 'include' string-literal ';'
Compile-time Behavior:
When encountering this statement at the beginning of a file, the compiler should interpret the
string literal as a relative file path, look up the corresponding file in an implementation-defined
way, and load the definitions from the given HeaderFile.
Runtime Behavior:
This statement has no runtime behavior.

4.4.4 Defining Types

TypeDefinition <- StructDefinition / EnumDefinition / UnionDefinition
Crowbar has three different kinds of user-defined types.
Compile-time Behavior:
When a type is defined, the compiler must then allow that type to be used.
Runtime Behavior:
The definition of a type has no runtime behavior.

Crowbar Specification, Release 09de53c don't announce on irc oops

14 Chapter 4. Chapters

StructDefinition <- NormalStructDefinition / OpaqueStructDefinition
NormalStructDefinition <- 'struct' identifier '{' VariableDeclaration+ '}'

A struct defines a composite type with several members. Its members are stored in the order in
which they are defined, and they each take up the space they normally would.

Todo

figure out alignment & padding

OpaqueStructDefinition <- 'opaque' 'struct' identifier ';'
An opaque struct is a struct whose name is part of an API boundary but whose contents are not. Its
size is left unspecified, and it can only be used as the target of a pointer.

EnumDefinition <- 'enum' identifier '{' EnumMember (',' EnumMember)* ','?
'}'
EnumMember <- identifier ('=' Expression)?

An enum defines a type which can take one of several specified values.

Todo

define enum value assignment, type-related behavior

UnionDefinition <- RobustUnionDefinition / FragileUnionDefinition
Unions as implemented in C are not robust by default, and care must be taken to ensure that they
are only used robustly. However, for the purpose of interoperability with C, Crowbar unions may
be defined as robust or as fragile.

RobustUnionDefinition <- 'union' identifier '{' VariableDeclaration
UnionBody '}'
UnionBody <- 'switch' '(' identifier ')' '{' UnionBodySet+ '}'
UnionBodySet <- CaseSpecifier+ (VariableDeclaration / ';')

A robust union, or simply union, in Crowbar is what is known more broadly as a tagged union.
It’s a way to package some data alongside an enum but have the type of data depend on the value
of the enum. Since the enum value indicates which data is present, the enum value is also known
as a tag. The top-level variable declaration creates the tag. The tag must have a type which is some
enum. The switch parameter must be the name of the tag, and the cases will declare the data
associated with a given value of the tag. This allows for storing extra data alongside enum values
while using minimal additional space in memory. (All the fields under the switch overlap as
stored in memory, so it’s important to use the tag to specify which field is available.)
For example:

enum TokenType {
 Identifier,
 Constant,
 Operator,
 Whitespace,
}

union Token {
 enum TokenType type;

 switch (type) {
 case Identifier: (const byte) * name;
 case Constant: intmax value;
 case Operator: (const byte) * op;
 case Whitespace: ;
 }

 Crowbar Specification, Release 09de53c don't announce
on irc oops

4.4. Language 15

}

defines a union Token type, where the type field controls which of the other fields in the
union is valid.

Todo

go into more depth about how tagged unions work

FragileUnionDefinition <- 'fragile' 'union' identifier '{'
VariableDeclaration+ '}'

A fragile union also allows for storing one of several different types of data. However, there is no
internal indication of which type of data is actually being stored in the union. As such, in
non-trivial cases no compiler can predict which field is or is not valid, and any statement which
reads a field of a fragile union must itself be a FragileStatement.
The size of a fragile union is the largest size of any of its members. The address of each member is
the address of the union object itself. The member which was most recently set will retain its
value. Reading another member with size no larger than the most recently set member will inter-
pret the first bytes of the most recently set member as a value of the type of the member being
read.
For example, the functions test1 and test2 are equivalent:

fragile union Example {
 float32 float_data;
 uint32 uint_data;
}

uint32 test1(float32 arg) {
 union Example temp;
 temp.float_data = arg;
 fragile return temp.uint_data;
}

uint32 test2(float32 arg) {
 float32* temp = &arg;
 fragile uint32* temp_casted = (uint32*)temp;
 return *temp_casted;
}

4.4.5 Functions

FunctionDeclaration <- FunctionSignature ';'
Compile-time Behavior:
Provides a declaration of a function with the name, return type, and arguments specified by the
signature, but does not specify any behavior. This is generally used as part of an API boundary.
Runtime Behavior:
A function declaration has no runtime behavior.

FunctionDefinition <- FunctionSignature Block
Compile-time Behavior:
Provides the actual behavior of a function, which may have been declared previously or may not.
If the function was declared in some .hro file which was included, the function must be
exported and available for external use in the compiler’s output. Otherwise, the function should
not be exported.
If the function signature specifies a return type other than void, but there are paths through the
block that do not execute a ReturnStatement, the compiler must give an error.
Runtime Behavior:
When the function is called, the arguments must be populated and the block must be executed.

Crowbar Specification, Release 09de53c don't announce on irc oops

16 Chapter 4. Chapters

FunctionSignature <- Type identifier '(' SignatureArguments? ')'
SignatureArguments <- Type identifier (',' Type identifier)* ','?

Compile-time Behavior:
A function signature specifies the return type, name, and arguments of a function.
Runtime Behavior:
A function signature has no runtime behavior.

4.4.6 Statements

Block <- '{' Statement* '}'
Compile-time Behavior:
A block is a possibly-empty sequence of statements surrounded by curly braces. Any declaration
or definition within the block must not be visible outside of the block.
Runtime Behavior:
When a block is executed, each of the containing statements, in linear order, is executed.

Statement <- VariableDefinition / StructureStatement / FlowControlStatement
/ AssignmentStatement / FragileStatement / ExpressionStatement /
EmptyStatement

Crowbar has many different types of statement.

EmptyStatement <- ';'
Compile-time Behavior:
None.
Runtime Behavior:
None.

FragileStatement <- 'fragile' Statement
Some behaviors are difficult to ensure the robustness of at compile time, and these behaviors are
defined in this specification as fragile. Fragile behaviors used outside of fragile statements should
produce a compiler error.
Compile-time Behavior:
Fragile behaviors used inside a fragile statement must not produce a compiler error for their
fragility. Nesting fragile statements should produce a compiler error.
Runtime Behavior:
The contained statement is executed.

ExpressionStatement <- Expression ';'
Compile-time Behavior:
If the expression is not a function call, the compiler may emit a warning.
Runtime Behavior:
The expression is evaluated and the resulting value is discarded. Function calls must be fully
evaluated, but expressions that are not function calls may be optimized out.

Variables

VariableDeclaration <- Type identifier ';'
Compile-time Behavior:
A variable declaration specifies the type and name of a variable but not its initial value. This is
only used in HeaderFiles as part of API boundaries.
Runtime Behavior:
A variable declaration has no runtime behavior.

VariableDefinition <- Type identifier '=' Expression ';'
Compile-time Behavior:
A variable definition specifies the type, name, and initial value of a variable. If the expression has

 Crowbar Specification, Release 09de53c don't announce
on irc oops

4.4. Language 17

a type which is not the type specified for the variable, an error must be emitted.
Runtime Behavior:
When a variable definition is executed, the expression is evaluated, and its result is made avail-
able with the given name.

Structure Statements

StructureStatement <- IfStatement / SwitchStatement / WhileStatement /
DoWhileStatement / ForStatement

A structure statement creates some nonlinear control structure. There are several types of these
structures.

IfStatement <- 'if' '(' Expression ')' Block ('else' Block)?
An if statement allows some action to be performed only sometimes, based on the value of the
expression.
Compile-time Behavior:
If the expression does not have type bool, the compiler must emit an error.
Runtime Behavior:
First, the expression is evaluated. If the expression evaluates to a bool value of true, then the
first block will be executed. If the expression evaluates to a bool value of false, either the
second block is executed or nothing is executed.

SwitchStatement <- 'switch' '(' Expression ')' '{' (CaseSpecifier /
Statement)+ '}'
CaseSpecifier <- 'case' Expression ':' / 'default' ':'

A switch statement allows many different actions to be taken depending on the value of some
expression.
Compile-time Behavior:
The expression must have a type which is either some integer type or an enum. The expression in
a case specifier must have a value which can always be known at compile time, i.e. its value must
be a constant or computed from only constants. Either there must be a case specifier for every
valid value in the type of the switch expression, or there must be a default case specifier. At most
one default case may be present.
Runtime Behavior:
First, the switch expression is evaluated. Whichever case specifier has the same value, or the
default case specifier if none is found, is then selected as the matching case specifier. Any case
specifiers immediately following the matching case specifier is ignored. Subsequent statements
are then executed, in linear order, until another case specifier is reached. The execution of the
switch statement then ends.

WhileStatement <- 'while' '(' Expression ')' Block
Compile-time Behavior:
The expression must have type bool.
Runtime Behavior:
The expression is evaluated, and, if it evaluates to true, the block is executed. This process repeats
until the expression evaluates to false.

DoWhileStatement <- 'do' Block 'while' '(' Expression ')' ';'
Compile-time Behavior:
The expression must have type bool.
Runtime Behavior:
The block is executed. Then, the expression is evaluated, and if it is true the process repeats.

Crowbar Specification, Release 09de53c don't announce on irc oops

18 Chapter 4. Chapters

ForStatement <- 'for' '(' ForInit? ';' Expression ';' ForUpdate? ')' Block
ForInit <- ForInitializer (',' ForInitializer)* ','?
ForInitializer <- Type identifier '=' Expression
ForUpdate <- AssignmentBody (',' AssignmentBody)* ','?

Compile-time Behavior:
The individual initializers each have the same behavior as a VariableDefinition, but for
scope purposes they are treated as though they are inside the block. The top-level expression in
the for statement must have type bool, and will be treated for scope purposes as though it is
inside the block. The update assignments will be treated for scope purposes as though they are
inside the block.
Runtime Behavior:
First, the initializers are executed the same way variable definitions would be, in the order they
are presented. Then, the top-level expression is evaluated, and if it is false the for statement ends.
If the top-level expression was true, the block is executed, and then the update assignments are
executed in the order they are presented. The process repeats starting with expression evaluation.

Flow Control Statements

FlowControlStatement <- ContinueStatement / BreakStatement /
ReturnStatement

ContinueStatement <- 'continue' ';'
Compile-time Behavior:
Only valid inside a WhileStatement, DoWhileStatement, or ForStatement block.
Runtime Behavior:
When a continue statement is executed, the innermost loop statement (while, do-while, or for)
that contains the continue statement skips the remainder of the execution of its block. For a while
or do-while loop, this means skipping to the condition. For a for loop, this means skipping to the
update assignments.

BreakStatement <- 'break' ';'
Compile-time Behavior:
Only valid inside a WhileStatement, DoWhileStatement, or ForStatement block.
Runtime Behavior:
When a break statement is executed, the innermost loop statement (while, do-while, or for) that
contains the break statement ends entirely, skipping any remaining statements, condition tests, or
updates.

ReturnStatement <- 'return' Expression? ';'
Compile-time Behavior:
The expression provided must have a type matching the return type of the containing function. If
the function has a return type of void, the expression must be omitted.
Runtime Behavior:
When a return statement with an expression is executed, the expression is evaluated, and the
containing function returns with the value obtained from this evaluation. When a return state-
ment with no expression is executed, the containing function returns.

Assignments

AssignmentStatement <- AssignmentBody ';'
AssignmentBody <- DirectAssignmentBody / UpdateAssignmentBody /
CrementAssignmentBody

 Crowbar Specification, Release 09de53c don't announce
on irc oops

4.4. Language 19

DirectAssignmentBody <- Expression '=' Expression

Todo

define direct assignment

UpdateAssignmentBody <- Expression ('+=' / '-=' / '*=' / '/=' / '%=' / '&='
/ '^=' / '|=') Expression

CrementAssignmentBody <- Expression ('++' / '--')

Todo

define other assignments relative to direct

4.4.7 Types

Type <- ConstType / PointerType / ArrayType / FunctionType / BasicType

ConstType <- 'const' BasicType

PointerType <- BasicType '*'

ArrayType <- BasicType '[' Expression ']'

FunctionType <- BasicType 'function' '(' FunctionTypeArgs? ')'
FunctionTypeArgs <- BasicType (',' BasicType)* ','?

Todo

define like any of these

BasicType <- 'void' / 'bool' / 'float32' / 'float64' / 'int8' / 'int16' /
'int32' / 'int64' / 'intaddr' / 'intmax' / 'intsize' / 'uint8' / 'uint16' /
'uint32' / 'uint64' / 'uintaddr' / 'uintmax' / 'uintsize' / 'struct'
identifier / 'enum' identifier / 'union' identifier / '(' Type ')'

void denotes the empty type.
bool denotes the Boolean type, with two values: true and false, represented as 1 and 0,
respectively.
float32 and float64 denote the binary32 and binary64 IEEE 754 floating-point types, respec-
tively.
int8, int16, int32, and int64 denote signed, two’s-complement integers with sizes 8 bits, 16
bits, 32 bits, and 64 bits, respectively.
uint8, uint16, uint32, and uint64 denote unsigned integers with sizes 8 bits, 16 bits, 32 bits,
and 64 bits, respectively.
intmax is a synonym for the largest signed integer type supported by the compiler.
uintmax is a synonym for the largest unsigned integer type supported by the compiler.
uintaddr is a synonym for an unsigned integer type large enough to hold any memory address
valid on the compilation target; the specific type is implementation defined.
intaddr is a synonym for a signed integer type at least as large as uintaddr.
uintsize is a synonym for an unsigned integer type large enough to hold any number of bytes
which may be contiguously allocated on the compilation target; the specific type is implementa-
tion defined.
intsize is a synonym for a signed integer type at least as large as uintsize.
struct, enum, or union followed by an identifier denotes the type with the given nature and

Crowbar Specification, Release 09de53c don't announce on irc oops

20 Chapter 4. Chapters

https://en.wikipedia.org/wiki/IEEE_754

name, which should be available in the compilation context when used.
Enclosing a Type in parentheses does not have semantic significance, but allows for syntactic
disambiguation of constructs that would otherwise be visually ambiguous.
Multi-byte integer types should be represented as either big endian or little endian based on the
preference of the compilation target platform, i.e. endianness is implementation defined.
Compilers targeting less-than-64-bit CPUs may omit support for some explicitly sized basic types,
but it would be nice if they provided software support for types not supported in hardware.

4.4.8 Expressions

AtomicExpression <- identifier / constant / 'true' / 'false' /
string-literal / '(' Expression ')'

ObjectExpression <- AtomicExpression ObjectSuffix* / ArrayLiteral /
StructLiteral
ObjectSuffix <- ArrayIndexSuffix / FunctionCallSuffix / StructElementSuffix
/ StructPointerElementSuffix

ArrayIndexSuffix <- '[' Expression ']'

FunctionCallSuffix <- '(' CommasExpressionList? ')'
CommasExpressionList <- Expression (',' Expression)* ','?

StructElementSuffix <- '.' identifier

StructPointerElementSuffix <- '->' identifier

ArrayLiteral <- '{' CommasExpressionList '}'

StructLiteral <- '{' StructLiteralElement (',' StructLiteralElement)* ','?
'}'
StructLiteralElement <- '.' identifier '=' Expression

FactorExpression <- CastExpression / AddressOfExpression / DerefExpression
/ PositiveExpression / NegativeExpression / BitwiseNotExpression /
LogicalNotExpression / SizeofExpression / ObjectExpression

CastExpression <- '(' Type ')' ObjectExpression

AddressOfExpression <- '&' ObjectExpression

DerefExpression <- '*' ObjectExpression

PositiveExpression <- '+' ObjectExpression

NegativeExpression <- '-' ObjectExpression

BitwiseNotExpression <- '~' ObjectExpression

LogicalNotExpression <- '!' ObjectExpression

SizeofExpression <- 'sizeof' ObjectExpression / 'sizeof' Type

TermExpression <- FactorExpression TermSuffix?
TermSuffix <- ('*' FactorExpression)+ / ('/' FactorExpression)+ / ('%'
FactorExpression)+

ArithmeticExpression <- TermExpression ArithmeticSuffix?
ArithmeticSuffix <- ('+' TermExpression)+ / ('-' TermExpression)+

 Crowbar Specification, Release 09de53c don't announce
on irc oops

4.4. Language 21

BitwiseOpExpression <- ShiftExpression / XorExpression /
BitwiseAndExpression / BitwiseOrExpression / ArithmeticExpression

ShiftExpression <- ArithmeticExpression '<<' ArithmeticExpression /
ArithmeticExpression '>>' ArithmeticExpression

XorExpression <- ArithmeticExpression '^' ArithmeticExpression

BitwiseAndExpression <- ArithmeticExpression ('&' ArithmeticExpression)+

BitwiseOrExpression <- ArithmeticExpression ('|' ArithmeticExpression)+

ComparisonExpression <- EqualExpression / NotEqualExpression /
LessEqExpression / GreaterEqExpression / LessThanExpression /
GreaterThanExpression / BitwiseOpExpression

EqualExpression <- BitwiseOpExpression '==' BitwiseOpExpression

NotEqualExpression <- BitwiseOpExpression '!=' BitwiseOpExpression

LessEqExpression <- BitwiseOpExpression '<=' BitwiseOpExpression

GreaterEqExpression <- BitwiseOpExpression '>=' BitwiseOpExpression

LessThanExpression <- BitwiseOpExpression '<' BitwiseOpExpression

GreaterThanExpression <- BitwiseOpExpression '>' BitwiseOpExpression

LogicalOpExpression <- LogicalAndExpression / LogicalOrExpression /
ComparisonExpression

LogicalAndExpression <- ComparisonExpression ('&&' ComparisonExpression)+

LogicalOrExpression <- ComparisonExpression ('||' ComparisonExpression)+

Expression <- LogicalOpExpression

Todo

literally all the expression definitions

Todo

figure out if this hierarchy can be tidied up

4.5 License

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 Inter-
national License.

Crowbar Specification, Release 09de53c don't announce on irc oops

22 Chapter 4. Chapters

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

4.6 TODO

Todo

literally all the expression definitions

(The original entry is located in /home/build/crowbar-spec/language/expression.rst, line 79.)

Todo

figure out if this hierarchy can be tidied up

(The original entry is located in /home/build/crowbar-spec/language/expression.rst, line 81.)

Todo

figure out https://www.unicode.org/reports/tr31/tr31-33.html

(The original entry is located in /home/build/crowbar-spec/language/scanning.rst, line 31.)

Todo

define direct assignment

(The original entry is located in /home/build/crowbar-spec/language/statements/assignment.rst,
line 9.)

Todo

define other assignments relative to direct

(The original entry is located in /home/build/crowbar-spec/language/statements/assignment.rst,
line 15.)

Todo

figure out alignment & padding

(The original entry is located in /home/build/crowbar-spec/language/type-definition.rst, line 22.)

Todo

define enum value assignment, type-related behavior

(The original entry is located in /home/build/crowbar-spec/language/type-definition.rst, line 36.)

Todo

go into more depth about how tagged unions work

(The original entry is located in /home/build/crowbar-spec/language/type-definition.rst, line 80.)

 Crowbar Specification, Release 09de53c don't announce
on irc oops

4.6. TODO 23

https://www.unicode.org/reports/tr31/tr31-33.html

Todo

define like any of these

(The original entry is located in /home/build/crowbar-spec/language/types.rst, line 16.)

Todo

figure out if that’s the right way to handle that

(The original entry is located in /home/build/crowbar-spec/safety.rst, line 41.)

4.7 Acknowledgements

• https://matt.sh/howto-c

Crowbar Specification, Release 09de53c don't announce on irc oops

24 Chapter 4. Chapters

https://matt.sh/howto-c

Element Index

a
AddressOfExpression, XX
ArithmeticExpression, XX
ArithmeticSuffix, XX
ArrayIndexSuffix, XX
ArrayLiteral, XX
ArrayType, XX
AssignmentBody, XX
AssignmentStatement, XX
AtomicExpression, XX

b
BasicType, XX
BitwiseAndExpression, XX
BitwiseNotExpression, XX
BitwiseOpExpression, XX
BitwiseOrExpression, XX
Block, XX
BreakStatement, XX

c
CaseSpecifier, XX
CastExpression, XX
CommasExpressionList, XX
ComparisonExpression, XX
ConstType, XX
ContinueStatement, XX
CrementAssignmentBody, XX

d
DerefExpression, XX
DirectAssignmentBody, XX
DoWhileStatement, XX

e
EmptyStatement, XX
EnumDefinition, XX
EnumMember, XX
EqualExpression, XX
Expression, XX

ExpressionStatement, XX

f
FactorExpression, XX
FlowControlStatement, XX
ForInit, XX
ForInitializer, XX
ForStatement, XX
ForUpdate, XX
FragileStatement, XX
FragileUnionDefinition, XX
FunctionCallSuffix, XX
FunctionDeclaration, XX
FunctionDefinition, XX
FunctionSignature, XX
FunctionType, XX
FunctionTypeArgs, XX

g
GreaterEqExpression, XX
GreaterThanExpression, XX

h
HeaderFile, XX
HeaderFileElement, XX

i
IfStatement, XX
ImplementationFile, XX
ImplementationFileElement, XX
IncludeStatement, XX

l
LessEqExpression, XX
LessThanExpression, XX
LogicalAndExpression, XX
LogicalNotExpression, XX
LogicalOpExpression, XX
LogicalOrExpression, XX

 25

n
NegativeExpression, XX
NormalStructDefinition, XX
NotEqualExpression, XX

o
ObjectExpression, XX
ObjectSuffix, XX
OpaqueStructDefinition, XX

p
PointerType, XX
PositiveExpression, XX

r
ReturnStatement, XX
RobustUnionDefinition, XX

s
ShiftExpression, XX
SignatureArguments, XX
SizeofExpression, XX
Statement, XX
StructDefinition, XX
StructElementSuffix, XX
StructLiteral, XX
StructLiteralElement, XX
StructPointerElementSuffix, XX
StructureStatement, XX
SwitchStatement, XX

t
TermExpression, XX
TermSuffix, XX
Type, XX
TypeDefinition, XX

u
UnionBody, XX
UnionBodySet, XX
UnionDefinition, XX
UpdateAssignmentBody, XX

v
VariableDeclaration, XX
VariableDefinition, XX

w
WhileStatement, XX

x
XorExpression, XX

Crowbar Specification, Release 09de53c don't announce on irc oops

26 Element Index

Index

B
binary constant, 13
block comment, 14

C
character constant, 13
comment, 14
constant, 12

D
decimal constant, 13

E
escape sequence, 13

F
floating-point constant, 13

H
hexadecimal constant, 13
hexadecimal floating-point constant, 13

I
identifier, 12

K
keyword, 12

L
line comment, 14

O
octal constant, 13

P
punctuator, 14

S
string literal, 14

T
token, 12

W
whitespace, 14

 27

	1 Motivation
	2 Journal
	3 Discuss
	4 Chapters
	4.1 Comparison to C
	4.1.1 Removals
	Footguns
	Needless Complexity

	4.1.2 Adjustments
	4.1.3 Additions
	Anti-Footguns
	Trivial Room For Improvement

	4.2 Memory Safety
	4.2.1 Access errors
	Buffer overflow
	Buffer over-read
	Race condition
	Page fault
	Use after free

	4.2.2 Uninitialized variables
	Null pointer dereference
	Wild pointers

	4.2.3 Memory leak
	Stack exhaustion
	Heap exhaustion
	Double free
	Invalid free
	Mismatched free
	Unwanted aliasing

	4.3 Error Handling
	4.4 Language
	4.4.1 Scanning
	4.4.2 Source Files
	4.4.3 Including Headers
	4.4.4 Defining Types
	4.4.5 Functions
	4.4.6 Statements
	Variables
	Structure Statements
	Flow Control Statements
	Assignments

	4.4.7 Types
	4.4.8 Expressions

	4.5 License
	4.6 TODO
	4.7 Acknowledgements

	Element Index
	Index

